
DYNAMIC ENGINEERING
150 Dubois St. C Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
 http://www.dyneng.com

sales@dyneng.com
 Est. 1988

PmcSer5, SerScc and SerUart
Driver Documentation

Manual Revision A
Corresponding Hardware: Revision C

Fab Number 10-2003-0303
PROM revision A

 Embedded Solutions Page 2 of 31

PmcSer5
WDM drivers for the PMC-Serial-RTN5
Serial Data Interface
PMC Module

Dynamic Engineering
150 Dubois, Suite C
Santa Cruz, CA 95060
831 457 8891
FAX 831 457 4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right
to make improvements or changes in the
product described in this document at any time
and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

This product has been designed to operate with
PMC Module carriers and compatible user-
provided equipment. Connection of
incompatible hardware is likely to cause serious
damage.

©2008 by Dynamic Engineering.

Trademarks and registered trademarks are owned
by their respective manufactures.
Manual Revision A. Revised July 18, 2008.

 Embedded Solutions Page 3 of 31

Table of Contents

Introduction 5

Note 5

Driver Installation 5

Windows 2000 Installation 6

Windows XP Installation 6

Driver Startup 7

IO Controls 15
IOCTL_PMC_SER5_GET_INFO 15
IOCTL_PMC_SER5_SET_BASE_CONFIG 16
IOCTL_PMC_SER5_GET_BASE_CONFIG 16
IOCTL_PMC_SER5_SET_TIMEOUT_CONFIG 17
IOCTL_PMC_SER5_GET_TIMEOUT_CONFIG 17
IOCTL_PMC_SER5_GET_STATUS 17
IOCTL_PMC_SER5_SET_ALT232_DATA_CONFIG 17
IOCTL_PMC_SER5_GET_ALT232_DATA_CONFIG 18
IOCTL_PMC_SER5_RS232_DATA_RDBK 18
IOCTL_PMC_SER5_REGISTER_EVENT 18
IOCTL_PMC_SER5_FORCE_INTERRUPT 18
IOCTL_PMC_SER5_GET_ISR_STATUS 18
IOCTL_SER_UART_GET_INFO 19
IOCTL_SER_UART_SET_CHAN_CONFIG 19
IOCTL_SER_UART_GET_CHAN_CONFIG 19
IOCTL_SER_UART_SET_DATA_CONFIG 19
IOCTL_SER_UART_GET_DATA_CONFIG 20
IOCTL_SER_UART_SET_INTEN 20
IOCTL_SER_UART_GET_INTEN 20
IOCTL_SER_UART_SET_MODEM_CONTROL 20
IOCTL_SER_UART_GET_MODEM_CONTROL 20
IOCTL_SER_UART_SET_FLOW_CONTROL_PARAMS 21
IOCTL_SER_UART_SET_FLOW_CONTROL_MODE 21
IOCTL_SER_UART_GET_FLOW_CONTROL_MODE 21
IOCTL_SER_UART_CONFIGURE_FIFOS 21
IOCTL_SER_UART_GET_STATUS 22
IOCTL_SER_UART_SET_TIME_OUT 22
IOCTL_SER_UART_GET_INTSTAT 22
IOCTL_SER_UART_REGISTER_EVENT 22
IOCTL_SER_UART_ENABLE_INTERRUPT 23
IOCTL_SER_UART_DISABLE_INTERRUPT 23

 Embedded Solutions Page 4 of 31

IOCTL_SER_UART_GET_ISR_STATUS 23
IOCTL_SER_UART_SET_EXPECTED_BAUDRATE 23
IOCTL_SER_SCC_GET_INFO 24
IOCTL_SER_SCC_SET_CLOCK_CONFIG 24
IOCTL_SER_SCC_GET_CLOCK_CONFIG 24
IOCTL_SER_SCC_SET_DATA_CONFIG 24
IOCTL_SER_SCC_GET_DATA_CONFIG 25
IOCTL_SER_SCC_SET_SYNC_CONFIG 25
IOCTL_SER_SCC_GET_SYNC_CONFIG 25
IOCTL_SER_SCC_SET_INT_CONFIG 25
IOCTL_SER_SCC_GET_INT_CONFIG 26
IOCTL_SER_SCC_RESET 26
IOCTL_SER_SCC_MISC_CMD 26
IOCTL_SER_SCC_INIT_RX 26
IOCTL_SER_SCC_INIT_TX 26
IOCTL_SER_SCC_RX_EN 27
IOCTL_SER_SCC_TX_EN 27
IOCTL_SER_SCC_GET_TREXT_STATUS 27
IOCTL_SER_SCC_GET_SPEC_STATUS 27
IOCTL_SER_SCC_GET_SDLC_STATUS 27
IOCTL_SER_SCC_SET_TIME_OUT 28
IOCTL_SER_SCC_GET_INTSTAT 28
IOCTL_SER_SCC_REGISTER_EVENT 28
IOCTL_SER_SCC_ENABLE_INTERRUPT 28
IOCTL_SER_SCC_DISABLE_INTERRUPT 29
IOCTL_SER_SCC_GET_ISR_STATUS 29
IOCTL_SER_SCC_SET_EXPECTED_BAUDRATE 29

Write 30

Read 30

WARRANTY AND REPAIR 30

Service Policy 31
Out of Warranty Repairs 31

For Service Contact: 31

 Embedded Solutions Page 5 of 31

Introduction

The PmcSer5, SerUart and SerScc drivers are Win32 driver model (WDM) device
drivers for the PMC-Serial-RTN5 from Dynamic Engineering. The PMC-Serial-RTN5
board has an XR16C854 Quad UART and a Z85230 Enhanced Serial Communication
Controller. A Spartan2-200 Xilinx FPGA implements the PCI interface, protocol control
and status, and device interfaces for four UART channels and two SCC channels.

When the PMC-Serial-RTN5 is recognized by the PCI bus configuration utility it will start
the PmcSer5 driver. The PmcSer5 driver enumerates the UART and SCC channels
and creates separate device object for each. This allows the I/O channels to be totally
independent while the base driver controls the device items that are common to all the
channels. IO Control calls (IOCTLs) are used to configure the board and read status.
Read and Write calls are used to move blocks of data in and out of the I/O channel
devices.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PMC-Serial-RTN5 user
manual (also referred to as the hardware manual).

Driver Installation

There are several files provided in each driver package. These files include
PmcSer5.sys, SerUart.sys, SerScc.sys, PmcSer.inf, SerChan.inf, DDPmcSer5.h,
DDSerUart.h, DDSerScc.h, PmcSer5GUID.h, SerUartGUID.h, SerSccGUID.h,
PmcSer5Test.exe, and PmcSer5Test source files.

DDPmcSer5.h, DDSerUart.h and DDSerScc.h are C header files that define the
Application Program Interface (API) to the drivers. PmcSer5GUID.h, SerUartGUID.h
and SerSccGUID.h are C header files that define the device interface identifiers for the
PmcSer5, SerUart and SerScc drivers. These files are required at compile time by any
application that wishes to interface with the drivers, but they are not needed for driver
installation.

PmcSer5Test.exe is a sample Win32 console application that makes calls into the
drivers to test each driver call without actually writing any application code. It is not
required during the driver installation.

To run PmcSer5Test.exe, open a command prompt console window and type
PmcSer5Test -d0 -?, PmcSer5Test -u0 -? or PmcSer5Test -s0 -?. This will display a
list of commands for the respective driver (the PmcSer5Test.exe file must be in the
directory that the window is referencing). The commands are all of the form

 Embedded Solutions Page 6 of 31

PmcSer5Test -dn -im where n and m are the device number and PmcSer5 driver ioctl
number respectively or PmcSer5Test -un -im where n and m are the UART channel
number and SerUart driver ioctl number respectively or PmcSer5Test -sn -im where n
and m are the SCC channel number and SerScc driver ioctl number respectively. This
application is intended to test the proper functioning of the driver calls, not for normal
operation.

Windows 2000 Installation

Copy PmcSer5.sys, SerUart.sys, SerScc.sys, PmcSer.inf and SerChan.inf to a floppy
disk, or CD if preferred.

With the PMC-Serial-RTN5 hardware installed, power-on the PCI host computer and
wait for the Found New Hardware Wizard dialogue window to appear.
_ Select Next.
_ Select Search for a suitable driver for my device.
_ Select Next.
_ Insert the disk prepared above in the desired drive.
_ Select the appropriate drive e.g. Floppy disk drives.
_ Select Next.
_ The wizard should find the PmcSer.inf file.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the UART and SCC channels and reopen the New
Hardware Wizard. Proceed as above substituting SerChan.inf for PmcSer.inf.
Repeat this for the other channels as necessary.

Windows XP Installation

Copy PmcSer5.sys, SerUart.sys, SerScc.sys, PmcSer.inf and SerChan.inf to a floppy
disk, or CD if preferred.

With the PMC-Serial-RTN5 hardware installed, power-on the PCI host computer and
wait for the Found New Hardware Wizard dialogue window to appear.
_ Insert the disk prepared above in the desired drive.
_ Select No when asked to connect to Windows Update.
_ Select Next.
_ Select Install the software automatically.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the UART and SCC channels and reopen the New
Hardware Wizard. Proceed as above for each channel as necessary.

 Embedded Solutions Page 7 of 31

Driver Startup

Once the driver has been installed it will start automatically when the system recognizes
the hardware. A handle can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system. The interface to
the device is identified using globally unique identifiers (GUIDs), which are defined in
PmcSer5GUID.h, SerUartGUID.h and SerSccGUID.h.

Below is example code for opening handles for device 0.
Note: In order to build an application with the code below you must link with setupapi.lib
and include the following header files: windows.h, stdio.h, stdlib.h, objbase.h, initguid.h,
setupapi.h, winerror.h, winioctl.h, process.h and memory.h

// Maximum length of the device name for a given interface
#define MAX_DEVICE_NAME 256

// Handles to device objects
HANDLE hPmcSer5 = INVALID_HANDLE_VALUE;
HANDLE hSerScc[NUM_SCHAN] = {INVALID_HANDLE_VALUE, INVALID_HANDLE_VALUE};
HANDLE hSerSccOL[NUM_SCHAN] = {INVALID_HANDLE_VALUE, INVALID_HANDLE_VALUE};
HANDLE hSerUart[NUM_UCHAN] = {INVALID_HANDLE_VALUE, INVALID_HANDLE_VALUE,
 INVALID_HANDLE_VALUE, INVALID_HANDLE_VALUE};
// PmcSer5 channel number
UCHAR chan;
// Return status from command
LONG status;
// Handle to device information structure for the interface to devices
HDEVINFO hDeviceInfo;
// The actual symbolic link name to use in the createfile
CHAR deviceName[MAX_DEVICE_NAME];
// Size of buffer reguired to get the symbolic link name
DWORD requiredSize;
// Interface data for this device
SP_DEVICE_INTERFACE_DATA interfaceData;
PSP_DEVICE_INTERFACE_DETAIL_DATA pDeviceDetail;

hDeviceInfo = SetupDiGetClassDevs(
 (LPGUID)&GUID_DEVINTERFACE_PMC_SER5,
 NULL,
 NULL,
 DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

if(hDeviceInfo == INVALID_HANDLE_VALUE)
{
 status = GetLastError();
 printf("**Error: couldn't get class info, (%d)\n", status);
 exit(-1);
}

 interfaceData.cbSize = sizeof(interfaceData);

 Embedded Solutions Page 8 of 31

// Find the interface for device 0
if(!SetupDiEnumDeviceInterfaces(hDeviceInfo,
 NULL,
 (LPGUID)&GUID_DEVINTERFACE_PMC_SER5,
 0,
 &interfaceData))
{
 status = GetLastError();
 if(status == ERROR_NO_MORE_ITEMS)
 {
 printf("**Error: couldn't find device(no more items), (%d)\n", 0);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 else
 {
 printf("**Error: couldn't enum device, (%d)\n", status);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

// Found our device, get the details data to obtain the symbolic link name
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 NULL,
 0,
 &requiredSize,
 NULL))
{
 if(GetLastError() != ERROR_INSUFFICIENT_BUFFER)
 {
 printf("**Error: couldn't get interface detail, (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

// Allocate a buffer to get detail
pDeviceDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize);
if(pDeviceDetail == NULL)
{
 printf("**Error: couldn't allocate interface detail\n");
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
}
pDeviceDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 Embedded Solutions Page 9 of 31

// Get the detail info
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 pDeviceDetail,
 requiredSize,
 NULL,
 NULL))
{
 printf("**Error: couldn't get interface detail(2), (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 free(pDeviceDetail);
 exit(-1);
}

// Save the name
lstrcpyn(deviceName, pDeviceDetail->DevicePath, MAX_DEVICE_NAME);

// Cleanup search
free(pDeviceDetail);
SetupDiDestroyDeviceInfoList(hDeviceInfo);

// Open driver - Create the handle to the device
hPmcSer5 = CreateFile(deviceName,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING, NULL, NULL);

if(hPmcSer5 == INVALID_HANDLE_VALUE)
{
 printf("**Error: couldn't open %s, (%d)\n", deviceName, GetLastError());
 exit(-1);
}

hDeviceInfo = SetupDiGetClassDevs(
 (LPGUID)&GUID_DEVINTERFACE_SER_SCC,
 NULL,
 NULL,
 DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

if(hDeviceInfo == INVALID_HANDLE_VALUE)
{
 status = GetLastError();
 printf("**Error: couldn't get class info, (%d)\n", status);
 exit(-1);
}

interfaceData.cbSize = sizeof(interfaceData);

 Embedded Solutions Page 10 of 31

for(chan = 0; chan < NUM_SCHAN; chan++)
{// Find the interface for chan device
 if(!SetupDiEnumDeviceInterfaces(hDeviceInfo,
 NULL,
 (LPGUID)&GUID_DEVINTERFACE_SER_SCC,
 chan,
 &interfaceData))
 {
 status = GetLastError();
 if(status == ERROR_NO_MORE_ITEMS)
 {
 printf("**Error: couldn't find device(no more items), (%d)\n",
 chan);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 else
 {
 printf("**Error: couldn't enum device, (%d)\n", status);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 }

 // Found our device, get the details data to obtain the symbolic link name
 if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 NULL,
 0,
 &requiredSize,
 NULL))
 {
 if(GetLastError() != ERROR_INSUFFICIENT_BUFFER)
 {
 printf("**Error: couldn't get interface detail, (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 }

 // Allocate a buffer to get detail
 pDeviceDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize);
 if(pDeviceDetail == NULL)
 {
 printf("**Error: couldn't allocate interface detail\n");
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 pDeviceDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 Embedded Solutions Page 11 of 31

 // Get the detail info
 if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 pDeviceDetail,
 requiredSize,
 NULL,
 NULL))
 {
 printf("**Error: couldn't get interface detail(2), (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 free(pDeviceDetail);
 exit(-1);
 }

 // Save the name
 lstrcpyn(deviceName, pDeviceDetail->DevicePath, MAX_DEVICE_NAME);

 // Cleanup search
 free(pDeviceDetail);

 // Open driver - Create the handle to the device
 hSerScc[chan] = CreateFile(deviceName,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 NULL,
 NULL);

 if(hSerScc[chan] == INVALID_HANDLE_VALUE)
 {
 printf("**Error: couldn't open %s, (%d)\n",
 deviceName, GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }

 hSerSccOL[chan] = CreateFile(deviceName,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);

 Embedded Solutions Page 12 of 31

 if(hSerSccOL[chan] == INVALID_HANDLE_VALUE)
 {
 printf("**Error: couldn't open %s, (%d)\n",
 deviceName, GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

SetupDiDestroyDeviceInfoList(hDeviceInfo);

hDeviceInfo = SetupDiGetClassDevs(
 (LPGUID)&GUID_DEVINTERFACE_SER_UART,
 NULL,
 NULL,
 DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

if(hDeviceInfo == INVALID_HANDLE_VALUE)
{
 status = GetLastError();
 printf("**Error: couldn't get class info, (%d)\n", status);
 exit(-1);
}

interfaceData.cbSize = sizeof(interfaceData);

for(chan = 0; chan < NUM_UCHAN; chan++)
{// Find the interface for chan device
 if(!SetupDiEnumDeviceInterfaces(hDeviceInfo,
 NULL,
 (LPGUID)&GUID_DEVINTERFACE_SER_UART,
 chan,
 &interfaceData))
 {
 status = GetLastError();
 if(status == ERROR_NO_MORE_ITEMS)
 {
 printf("**Error: couldn't find device(no more items), (%d)\n",
 chan);

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 else
 {
 printf("**Error: couldn't enum device, (%d)\n", status);
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 }

 Embedded Solutions Page 13 of 31

 // Found our device, get the details data to obtain the symbolic link name
 if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 NULL,
 0,
 &requiredSize,
 NULL))
 {
 if(GetLastError() != ERROR_INSUFFICIENT_BUFFER)
 {
 printf("**Error: couldn't get interface detail, (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 }

 // Allocate a buffer to get detail
 pDeviceDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize);
 if(pDeviceDetail == NULL)
 {
 printf("**Error: couldn't allocate interface detail\n");
 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
 pDeviceDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 // Get the detail info
 if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo,
 &interfaceData,
 pDeviceDetail,
 requiredSize,
 NULL,
 NULL))
 {
 printf("**Error: couldn't get interface detail(2), (%d)\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 free(pDeviceDetail);
 exit(-1);
 }

 // Save the name
 lstrcpyn(deviceName, pDeviceDetail->DevicePath, MAX_DEVICE_NAME);

 // Cleanup search
 free(pDeviceDetail);

 Embedded Solutions Page 14 of 31

 // Open driver - Create the handle to the device
 hSerUart[chan] = CreateFile(deviceName,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 NULL,
 NULL);

 if(hSerUart[chan] == INVALID_HANDLE_VALUE)
 {
 printf("**Error: couldn't open %s, (%d)\n",
 deviceName, GetLastError());

 SetupDiDestroyDeviceInfoList(hDeviceInfo);
 exit(-1);
 }
}

SetupDiDestroyDeviceInfoList(hDeviceInfo);

 Embedded Solutions Page 15 of 31

IO Controls

The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice , // Handle opened with CreateFile()
 DWORD dwIoControlCode , // Control code defined in API header file
 LPVOID lpInBuffer , // Pointer to input parameter
 DWORD nInBufferSize , // Size of input parameter
 LPVOID lpOutBuffer , // Pointer to output parameter
 DWORD nOutBufferSize , // Size of output parameter
 LPDWORD lpBytesReturned , // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped , // Optional pointer to overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the PmcSer5 driver are described below:

IOCTL_PMC_SER5_GET_INFO

Function: Returns the current driver version, user switch value, UART device ID and
revision, and Xilinx revision.
Input: None
Output: PMC_SER5_DRIVER_DEVICE_INFO structure
Notes: This call only accesses the hardware to read the user-switch setting. All other
values are constants or are read and stored during driver start-up. See DDPmcSer5.h
for the definition of PMC_SER5_DRIVER_DEVICE_INFO.

 Embedded Solutions Page 16 of 31

IOCTL_PMC_SER5_SET_BASE_CONFIG

Function: Sets IO configuration parameters in the PMC-Serial-RTN5 base control
register.
Input: PMC_SER5_BASE_CONFIG structure
Output: None
Notes: Selects the reference clock source(s) for the UART and SCC devices, the bus
timeout interrupt enable state, and other miscellaneous controls. This call controls the
routing of the SCC bi-directional signals Sync and TRxClk to either input or output
drivers and which input drives the SCC DCD and RTxClk lines. These driver controls
are summarized in the table below.

Structure field SCC Signal When True When False
SRTxClkA /RTxCA driven by IO_1P driven by IO_5P
SRTxClkB /RTxCB driven by IO_9P driven by IO_13P
SDcdA /DCDA driven by IO_0P driven by IO_4N
SDcdB /DCDB driven by IO_8P driven by IO_12N
STRxClkAin /TRxCA driven by IO_5N drives IO_7N
STRxClkBin /TRxCB driven by IO_13N drives IO_15N
SSyncAin /SYNCA driven by IO_4P drives IO_6P and AUXOUT0
SSyncBin /SYNCB driven by IO_12P drives IO_14P and AUXOUT1

SInvRtsA , when true, inverts the polarity of the RTS signal from channel A.
UFFStatEn, when true, enables the status of the eight UART FIFOs (two per channel)
on the UART data-bus in place of UART read data regardless of the state of the
address lines.

RxATerm and RxBTerm, when true, enables the 100Ω shunt termination across the
differential pairs of the respective UART receivers. (channels C and D are RS-232)

The direction of the SYNC and TRxC signals to/from the SCC must be set
independently using the SET_SCC_CLOCK_CONFIG and SET_SCC_SYNC_CONFIG
calls. See DDPmcSer5.h for the definition of PMC_SER5_BASE_CONFIG. See
DDSerScc.h for information on the sync and clock configuration commands. See the
PMC-Serial-RTN5 user manual for more information on the IO pin-outs.

IOCTL_PMC_SER5_GET_BASE_CONFIG

Function: Returns the configuration of the base control register.
Input: None
Output: PMC_SER5_BASE_CONFIG structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 17 of 31

IOCTL_PMC_SER5_SET_TIMEOUT_CONFIG

Function: Sets the bus timeout count and data value.
Input: PMC_SER5_TIMEOUT_CONFIG structure
Output: None
Notes: Sets the timeout count, the number of PCI clocks that the bus interface will wait
before signaling a timeout interrupt and returning the data specified in the timeout data
field. This will only occur when UART pre-read data is accessed and there is
insufficient data stored to satisfy the request. See DDPmcSer5.h for the definition of
PMC_SER5_TIMEOUT_CONFIG.

IOCTL_PMC_SER5_GET_TIMEOUT_CONFIG

Function: Returns the bus timeout count and data values.
Input: None
Output: PMC_SER5_TIMEOUT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMC_SER5_GET_STATUS

Function: Returns the status bits in the INT_STAT register.
Input: None
Output: Unsigned long integer
Notes: Reads and returns the value of the INT_STAT register which indicates the state
of the various interrupt sources. This call also clears all the latched UART and SCC
interrupt bits as well as the latched timer interrupt bit. See the bit definitions in the
DDPmcSer5.h header file for more information.

IOCTL_PMC_SER5_SET_ALT232_DATA_CONFIG

Function: Writes enables and data values for the 24 RS-232 and 2 TTL outputs.
Input: PMC_SER5_ALT232DAT_CONFIG structure
Output: None
Notes: If an enable for a particular bit is set to a one, the corresponding data value for
that bit supersedes the previously assigned output signal. There are 24 RS-232 signals
controlled by the low 24 bits and the next two bits control the two TTL AUX outputs.
See the DDPmcSer5.h header file for the definition of
PMC_SER5_ALT232DAT_CONFIG.

 Embedded Solutions Page 18 of 31

IOCTL_PMC_SER5_GET_ALT232_DATA_CONFIG

Function: Returns the alternate data values and enables for the 24 RS-232 and 2 TTL
outputs.
Input: None
Output: PMC_SER5_ALT232DAT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMC_SER5_RS232_DATA_RDBK

Function: Reads the 24 RS-232 and two auxilliary input data values.
Input: None
Output: unsigned long integer
Notes: Returns the value of the AUX/RS-232 data input bus.

IOCTL_PMC_SER5_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user interrupt service
routine waits on this event, allowing it to respond to the interrupt. In order to un-register
the event, set the event handle to NULL while making this call. The event itself must be
freed separately using the CloseHandle() call, when it is no longer needed.

IOCTL_PMC_SER5_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus. This IOCTL is used for
development, to test interrupt processing.

IOCTL_PMC_SER5_GET_ISR_STATUS

Function: Returns the interrupt status value read in the last ISR.
Input: None
Output: Unsigned long integer
Notes: The status contains the contents of the INT_STAT register read in the last driver
interrupt service routine.

 Embedded Solutions Page 19 of 31

The IOCTLs defined for the SerUart driver are described below:

IOCTL_SER_UART_GET_INFO

Function: Returns the current driver version and Instance number of the referenced
UART channel. Also returns the UART device ID and revision.
Input: None
Output: SER_UART_DRIVER_DEVICE_INFO structure
Notes: The driver version is a constant and the instance number is assigned by the
system on start-up. The instance number is equal to the number of UART channels that
have already been seen by the system i.e. the first channel (channel A) is instance
number zero and the other channels art instance number one through three. If more
than one PMC-Serial RTN5 is installed, the numbering will continue with the UART
channels of the second board. The UART device ID and revision are read during driver
initialization and saved for further reference. See DDSerUart.h for the
SER_UART_DRIVER_DEVICE_INFO definition.

IOCTL_SER_UART_SET_CHAN_CONFIG

Function: Sets the configuration parameters for the referenced UART channel’s Xilinx
control register.
Input: UART_CHAN_CONFIG structure
Output: None
Notes: Controls the PCI bus to/from UART data interface configuration. See
DDSerUart.h for the definition of UART_CHAN_CONFIG.

IOCTL_SER_UART_GET_CHAN_CONFIG

Function: Returns the configuration parameters of the referenced UART channel’s
Xilinx control register.
Input: None
Output: UART_CHAN_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_UART_SET_DATA_CONFIG

Function: Sets the configuration of the UART channel’s data word and baud rate.
Input: UART_DATA_CONFIG structure
Output: None
Notes: Controls the baud rate, number of data bits, number of stop bits and the parity
configuration for a UART channel. This call accesses the UART channel’s LCR, DLL,
and DLM registers. See DDSerUart.h for the definition of UART_DATA_CONFIG. See
the XR16C854 user manual for the UART internal register descriptions.

 Embedded Solutions Page 20 of 31

IOCTL_SER_UART_GET_DATA_CONFIG

Function: Returns the UART channel’s data configuration.
Input: None
Output: UART_DATA_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_UART_SET_INTEN

Function: Sets the possible interrupt sources for the referenced UART channel.
Input: UART_INT_CONFIG structure
Output: None
Notes: Selects any of seven interrupt sources for a UART channel. Accesses the
UART IER register. See DDSerUart.h for the definition of UART_INT_CONFIG. See
the XR16C854 user manual for the UART interrupt enable register description.

IOCTL_SER_UART_GET_INTEN

Function: Returns the interrupt enable configuration for the UART channel.
Input: None
Output: UART_INT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_UART_SET_MODEM_CONTROL

Function: Sets the modem control signals and internal loop-back enable for the
referenced UART channel.
Input: UART_MODEM_CONTROL structure
Output: None
Notes: Controls the state of the modem control signals (RTS, DTR) and internal loop-
back signals (OP1, OP2) for a UART channel. Also controls the baud rate generator
pre-scale divide-by-four circuit. Accesses the UART MCR register. See DDSerUart.h
for the definition of UART_MODEM_CONTROL. See the XR16C854 user manual for
the UART modem control register description.

IOCTL_SER_UART_GET_MODEM_CONTROL

Function: Returns the modem control signals for the UART channel.
Input: None
Output: UART_MODEM_CONTROL structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 21 of 31

IOCTL_SER_UART_SET_FLOW_CONTROL_PARAMS

Function: Sets the flow control parameters for the UART channel.
Input: UART_FLOW_PARAMS structure
Output: None
Notes: Sets the Rx and Tx FIFO trigger levels, Rx hysteresis value, and the Xon and
Xoff character values. Accesses the UART FCTR, EMSR, TRG, XON1, XON2, XOFF1,
and XOFF2 registers. See DDSerUart.h for the definition of UART_FLOW_PARAMS.
See the XR16C854 user manual for the UART internal register descriptions. The
EMSR and TRG registers are write only, so there is no corresponding
GET_UART_FLOW_CONTROL_PARAMS call.

IOCTL_SER_UART_SET_FLOW_CONTROL_MODE

Function: Sets the flow control mode for the UART channel.
Input: UART_FLOW_CONFIG structure
Output: None
Notes: Controls whether hardware, software, or no flow control is used for a UART
channel, and further details of the selected mode. Accesses the UART EFR register.
See DDSerUart.h for the definition of UART_FLOW_CONFIG. See the XR16C854 user
manual for the UART enhanced function register description.

IOCTL_SER_UART_GET_FLOW_CONTROL_MODE

Function: Returns the flow control mode for the UART channel.
Input: None
Output: UART_FLOW_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_UART_CONFIGURE_FIFOS

Function: Enables and/or resets Rx, Tx or both of the UARTchannel’s FIFOs.
Input: UART_FIFO_CONTROL enumeration type
Output: None
Notes: Controls whether the UART FIFOs are enabled or disabled. If the FIFOs are
enabled; either the transmit, receive or both FIFOs can be reset. See DDSerUart.h for
the definition of UART_FIFO_ CONTROL. An Rx FIFO reset will also delete any data
pre-read from the Rx FIFO.

 Embedded Solutions Page 22 of 31

IOCTL_SER_UART_GET_STATUS

Function: Reads various status values for the UART channel.
Input: None
Output: UART_STATUS structure
Notes: Reads and returns the value of the UART channel’s interrupt status register, line
status register, and modem status register as well as the Rx and Tx FIFO data counts.
See DDSerUart.h for the definition of UART_STATUS.

IOCTL_SER_UART_SET_TIME_OUT

Function: Sets the I/O Timeout value.
Input: Timeout in milliseconds (unsigned long integer)
Output: None
Notes: Sets the time the driver will wait for an IO request to complete (read or write). If
the value is set to zero (reset value), the wait will be infinite. This timeout is set once
when the read or write is started, so the value should exceed the expected data transfer
time for the requested buffer size.

IOCTL_SER_UART_GET_INTSTAT

Function: Returns the status bits in the INT_STAT register.
Input: None
Output: Unsigned long integer
Notes: Reads and returns the value of the INT_STAT register which indicates the state
of the various interrupt sources. This call also clears the latched status for this UART
channel and the latched timer interrupt bit. See the bit definitions in the DDSerUart.h
header file for more information.

IOCTL_SER_UART_REGISTER_EVENT

Function: Registers an event to be signaled when a user interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user interrupt service
routine waits on this event, allowing it to respond to the interrupt. In order to un-register
the event, set the event handle to NULL while making this call. The event itself must be
freed separately using the CloseHandle() call, when it is no longer needed.

 Embedded Solutions Page 23 of 31

IOCTL_SER_UART_ENABLE_INTERRUPT

Function: Sets the user interrupt enable to true for the channel referenced.
Input: None
Output: None
Notes: This call sets the UART channel control interrupt enable, leaving all other bit
values in the channel control register the same. This IOCTL is used when user interrupt
processing is initiated and in the user interrupt processing function to re-enable the
interrupts after they were disabled in the driver interrupt service routine. The read and
write interrupts operate independently from this enable, under driver control.

IOCTL_SER_UART_DISABLE_INTERRUPT

Function: Clears the user interrupt enable for the referenced UART channel.
Input: None
Output: None
Notes: Clears the interrupt enable for the UART channel referenced. This IOCTL is
used when interrupt processing is no longer desired.

IOCTL_SER_UART_GET_ISR_STATUS

Function: Returns the interrupt status and the relevant UART interrupt status register
value read in the last ISR.
Input: None
Output: SER_UART_INT_STAT structure
Notes: The status contains the contents of the INT_STAT register read in the last driver
interrupt service routine execution and the interrupt status register value for the
referenced UART channel read in the last ISR. See DDSerUart.h for the definition of
SER_UART_INT_STAT.

IOCTL_SER_UART_SET_EXPECTED_BAUDRATE

Function: Sets an incremental timeout for received UART data in order to detect when
the transfer has finished. Useful when the requested data buffer-size is greater than the
actual amount of data received.
Input: Baud rate in bits per second (unsigned long integer)
Output: None
Notes: Used to calculate the time the driver will wait for each receive interrupt while a
ReadFile call is in progress. When the read is started and each time the ISR runs for
the received data available interrupt, the timeout is reinitialized to this value (a larger
value is used when FIFOs are enabled). Once the timeout has expired (provided the
buffer length requested has not been satisfied), any data left in the receive FIFO will be
read and the call will return with STATUS_SUCCESS. If the value is set to zero
(default), the wait will be infinite. This timeout is only used for read/receptions and will
supersede the timeout value entered in the IOCTL_SER_UART_SET_TIME_OUT call.

 Embedded Solutions Page 24 of 31

The IOCTLs defined for the SerScc driver are described below:

IOCTL_SER_SCC_GET_INFO

Function: Returns the current driver version and Instance number of the referenced
SCC channel.
Input: None
Output: SER_SCC_DRIVER_DEVICE_INFO structure
Notes: This call does not access the hardware. The driver version is a constant and the
instance number is assigned by the system on start-up. The instance number is equal
to the number of SCC channels that have already been seen by the system i.e. the first
channel (channel A) is instance number zero and the second is instance number one. If
more than one PMC-Serial RTN5 is installed, the numbering will continue with the SCC
channels of the second board. See DDSerScc.h for the definition of
SER_SCC_DRIVER_DEVICE_INFO.

IOCTL_SER_SCC_SET_CLOCK_CONFIG

Function: Sets the clock source and time constant for the baud-rate generator, the Tx,
Rx clock sources, and the clock multiple value. Also determines the direction and
source of the TRxClk signal.
Input: SCC_CLOCK_CONFIG structure
Output: None
Notes: The baud rate is determined by the following formula:
Osc freq/(2 * clock multiple * (BaudDiv + 2)). See DDSerScc.h for the definition of
SCC_CLOCK_CONFIG.

IOCTL_SER_SCC_GET_CLOCK_CONFIG

Function: Returns the SCC channel's Tx and Rx clock source, rate, etc.
Input: None
Output: SCC_CLOCK_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_SCC_SET_DATA_CONFIG

Function: Sets the SCC channel’s Tx and Rx data word size, parity, and encoding.
Input: SCC_DATA_CONFIG structure
Output: None
Notes: The Rx data size can be 5, 6, 7, or 8 bits. Transmit data sizes less than five bits
are possible, but require that the data be pre-formatted before being written to the
transmit data buffer. See the SCC user manual for the details of this process. The
number of stop bits can be 1, 1.5, 2, or 0. If zero stop bits are selected, this enables
synchronous mode. If the 1x clock multiplier is selected, the 1.5 stop bit selection is not
allowed. See DDSerScc.h for the definition of SCC_DATA_CONFIG.

 Embedded Solutions Page 25 of 31

IOCTL_SER_SCC_GET_DATA_CONFIG

Function: Returns the SCC channel’s Tx and Rx data word size, parity, and encoding.
Input: None
Output: SCC_DATA_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_SCC_SET_SYNC_CONFIG

Function: Sets the SCC channel’s CRC parameters sync patterns, and sync type.
Input: SCC_SYNC_CONFIG structure
Output: None
Notes: In mono-sync mode, Sync0 contains the transmit sync and Sync1 contains the
receive sync. In bi-sync mode, the sync character is contained in both fields with the
lower bits in Sync0. In all cases the values are right justified. In SDLC mode, the SDLC
flag is loaded automatically and Sync0 contains the secondary address field to compare
against the address field of the SDLC frame. This process is modified if SyncNoLd is
true in the SCC_RX_CONFIG, in this case only the upper four address bits are
compared, so the receiver will respond to a range of 16 addresses. If external sync
mode is selected, the direction of the sync signal is automatically changed to an input.
The base control register must be configured accordingly. See the SCC user manual
for more information on the various sync modes. See DDSerScc.h for the definition of
SCC_SYNC_CONFIG.

IOCTL_SER_SCC_GET_SYNC_CONFIG

Function: Returns the SCC channel’s CRC parameters and sync type.
Input: None
Output: SCC_SYNC_CONFIG structure
Notes: Returns the values set in the previous call except the sync pattern values.

IOCTL_SER_SCC_SET_INT_CONFIG

Function: Sets the SCC channel’s interrupt configuration.
Input: SCC_INT_CONFIG structure
Output: None
Notes: The interrupts of the SCC are divided into three groups. The receive interrupt
group consists of the receive character available and special condition interrupts. The
special conditions include overrun, framing error, end-of-frame (SDLC), and (if enabled)
parity error. The transmit buffer empty is the only transmitter interrupt. Finally the
external interrupts are Tx underrun, break/abort, sync/hunt, CTS, DCD, and baud-rate-
generator count-down to zero. See the SCC user manual for more information on the
interrupt behavior and see DDSerScc.h for the definition of SCC_INT_CONFIG.

 Embedded Solutions Page 26 of 31

IOCTL_SER_SCC_GET_INT_CONFIG

Function: Returns the SCC channel’s interrupt configuration.
Input: None
Output: SCC_INT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SER_SCC_RESET

Function: Resets the referenced SCC channel.
Input: None
Output: None
Notes: After the reset, the configuration values for the affected channel(s) are restored
except that the transmitter and receiver will be stopped.

IOCTL_SER_SCC_MISC_CMD

Function: Issues the SCC channel’s DPLL, CRC, and latch-reset commands. Also
controls internal loop-back, auto-echo, and the SCLC status FIFO enable.
Input: SCC_MISC_CMD structure
Output: None
Notes: See the SCC user manual for information on the various commands issued.
See DDSerScc.h for the definition of SCC_MISC_CMD.

IOCTL_SER_SCC_INIT_RX

Function: Initializes the SCC channel’s receiver in a particular mode.
Input: SCC_RX_CONFIG structure
Output: None
Notes: See the SCC user manual for information on the various receive modes. See
DDSerScc.h for the definition of SCC_RX_CONFIG.

IOCTL_SER_SCC_INIT_TX

Function: Initializes the SCC channel’s transmitter in a particular mode.
Input: SCC_TX_CONFIG structure
Output: None
Notes: See the SCC user manual for information on the various transmit modes and
features. See DDSerScc.h for the definition of SCC_TX_CONFIG.

 Embedded Solutions Page 27 of 31

IOCTL_SER_SCC_RX_EN

Function: Start or stop the SCC channel’s receiver.
Input: enable (BOOLEAN type)
Output: None
Notes: When enable is set to true, the referenced receive channel is started, when
enable is false the receiver is stopped.

IOCTL_SER_SCC_TX_EN

Function: Start or stop the SCC channel’s transmitter.
Input: enable (BOOLEAN type)
Output: None
Notes: When enable is set to true, the referenced transmit channel is started, when
enable is false the transmitter is stopped.

IOCTL_SER_SCC_GET_TREXT_STATUS

Function: Returns the SCC channel's Tx/Rx buffer and external status
Input: None
Output: SCC_TREXT_STAT structure
Notes: See DDSerScc.h for the definition of SCC_TREXT_STAT.

IOCTL_SER_SCC_GET_SPEC_STATUS

Function: Returns the SCC channel's special conditions status
Input: None
Output: SCC_SPEC_STAT structure
Notes: This call returns various Special Receive Condition status bits: All Sent, Parity
Error, Rx Overrun Error, CRC/Framing Error and SDLC End of Frame. The ResCode
field contains the SDLC residue code. See the SCC user manual for more information
on interpreting these values. See DDSerScc.h for the definition of SCC_SPEC_STAT.

IOCTL_SER_SCC_GET_SDLC_STATUS

Function: Returns the SCC channel's SDLC status SDLC frame status FIFO data and
other SDLC status.
Input: None
Output: SCC_SDLC_STAT structure
Notes: See DDSerScc.h for the definition of SCC_SDLC_STAT. Also refer to the user
manual for the SCC device for a description of the SDLC function.

 Embedded Solutions Page 28 of 31

IOCTL_SER_SCC_SET_TIME_OUT

Function: Sets the I/O Timeout value.
Input: Timeout in milliseconds (unsigned long integer)
Output: None
Notes: Sets the time the driver will wait for an IO request to complete (read or write). If
the value is set to zero (reset value), the wait will be infinite. This timeout is set once
when the read or write is started, so the value should exceed the expected data transfer
time for the requested buffer size.

IOCTL_SER_SCC_GET_INTSTAT

Function: Returns the status bits in the INT_STAT register.
Input: None
Output: Unsigned long integer
Notes: Reads and returns the value of the INT_STAT register which indicates the state
of the various interrupt sources. This call also clears the latched SCC interrupt bit. See
the bit definitions in the DDSerScc.h header file for more information.

IOCTL_SER_SCC_REGISTER_EVENT

Function: Registers an event to be signaled when a user interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user interrupt service
routine waits on this event, allowing it to respond to the interrupt. In order to un-register
the event, set the event handle to NULL while making this call. The event itself must be
freed separately using the CloseHandle() call, when it is no longer needed.

IOCTL_SER_SCC_ENABLE_INTERRUPT

Function: Sets the user interrupt enable to true for the SCC channel referenced.
Input: None
Output: None
Notes: This call writes to the IEN register for the SCC channel referenced. This IOCTL
is used when user interrupt processing is initiated and in the user interrupt processing
function to re-enable the interrupts after they were disabled in the driver interrupt
service routine. The read and write interrupts operate independently from this enable,
under driver control.

 Embedded Solutions Page 29 of 31

IOCTL_SER_SCC_DISABLE_INTERRUPT

Function: Clears the user interrupt enable for the referenced SCC channel.
Input: None
Output: None
Notes: Clears the user interrupt enable for the SCC channel referenced. This IOCTL is
used when interrupt processing is no longer desired.

IOCTL_SER_SCC_GET_ISR_STATUS

Function: Returns the overall interrupt status and the relevant SCC interrupt status
register value read in the last ISR.
Input: None
Output: SER_SCC_INT_STAT structure
Notes: The status contains the contents of the INT_STAT register read in the last driver
interrupt service routine execution and the interrupt pending register of the SCC. See
DDSerScc.h for the definition of SER_SCC_INT_STAT.

IOCTL_SER_SCC_SET_EXPECTED_BAUDRATE

Function: Sets an incremental timeout for received SCC data in order to detect when
the transfer has finished. Useful when the requested data buffer-size is greater than the
actual amount of data received.
Input: Baud rate in bits per second (unsigned long integer)
Output: None
Notes: Used to calculate the time the driver will wait for each receive interrupt while a
ReadFile call is in progress. When the read is started and each time the ISR runs for
the received data available interrupt, the timeout is reinitialized to this value
(approximately 64 bit-times). Once the timeout has expired (provided the buffer length
requested has not been satisfied), any data left in the receive FIFO or buffer will be read
and the call will return with STATUS_SUCCESS. If the value is set to zero (default), the
wait will be infinite. This timeout is only used for read/receptions and will supersede the
timeout value entered in the IOCTL_SER_SCC_SET_TIME_OUT call.

 Embedded Solutions Page 30 of 31

Write

Data to be sent from the transmitter is written to the transmit FIFO using a WriteFile()
call. The user supplies the device handle, a pointer to the buffer containing the data,
the number of bytes to write, a pointer to a variable to store the amount of data actually
transferred, and a pointer to an optional Overlapped structure for performing
asynchronous IO. If the number of bytes requested exceeds the size of the buffer
available, the driver will use interrupts to detect when more data can be written to the
device. For a UART channel, if 16-bit or 32-bit writes are enabled, they will be used to
implement this command. See Win32 help files for details the of the WriteFile() call.

Read

Received data can be read from the receive FIFO using a ReadFile() call. The user
supplies the device handle, a pointer to the buffer to store the data in, the number of
bytes to read, a pointer to a variable to store the amount of data actually transferred,
and a pointer to an optional Overlapped structure for performing asynchronous IO. If
the number of bytes requested exceeds the receive FIFO size, the driver will use
interrupts to detect when more data has arrived. Timeouts can be set to terminate the
call when insufficient data is received. For a UART channel, if 16-bit or 32-bit reads are
enabled, they will be used to implement this command. See Win32 help files for the
details of the ReadFile() call.

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchandisability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

 Embedded Solutions Page 31 of 31

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be cockpit error
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 Dubois, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

